
Estimation of critical behavior from the density of states in classical statistical models

A. Malakis,* A. Peratzakis, and N. G. Fytas
Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, GR 15784 Zografos, Athens, Greece

(Received 21 July 2004; published 22 December 2004)

We present a simple and efficient approximation scheme which greatly facilitates the extension of Wang-
Landau sampling(or similar techniques) in large systems for the estimation of critical behavior. The method,
presented in an algorithmic approach, is based on a very simple idea, familiar in statistical mechanics from the
notion of thermodynamic equivalence of ensembles and the central limit theorem. It is illustrated that we can
predict with high accuracy the critical part of the energy space and by using this restricted part we can extend
our simulations to larger systems and improve the accuracy of critical parameters. It is proposed that the
extensions of the finite-size critical part of the energy space, determining the specific heat, satisfy a scaling law
involving the thermal critical exponent. The method is applied successfully for the estimation of the scaling
behavior of specific heat of both square and simple cubic Ising lattices. The proposed scaling law is verified by
estimating the thermal critical exponent from the finite-size behavior of the critical part of the energy space.
The density of states of the zero-field Ising model on these lattices is obtained via a multirange Wang-Landau
sampling.
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I. INTRODUCTION

In the past half century, importance sampling in the ca-
nonical ensemble and especially the Metropolis method and
its variants was the main tool in condensed matter physics,
mainly for the study of critical phenomena[1–6]. However,
this standard approach has two serious disadvantages. The
partition function of the statistical model is not an output of
such calculations and in many cases importance sampling is
trapped for significant time in valleys of rough free energy
landscape. Over the last decade, there have been a number of
interesting approaches addressing these problems[5–14].
Recently efficient methods that directly calculate the density
of states(DOS), or the spectral degeneracy, of classical sta-
tistical models have been developed. A few remarkable ex-
amples are the entropic[5,7], multicanonical[8], histogram
and broad histogram[9,10], transition matrix[11,12] and
Wang-Landau[13–17] methods. The above methods are
thought to be the most promising ones for the application of
finite-size analysis in data with higher accuracy. It is well
known [6] that finite-size analysis is very sensitive to simu-
lational errors and in most cases the asymptotic analysis may
become a notorious task, due to the fact that these errors may
“interfere” with unknown correction terms[6].

In this paper we concentrate on the Wang-Landau method
[13–17]. Noteworthy is that this method was applied by
these authors on the two-dimensional Ising model producing
the density of states even on lattices as large as 2563256.
This was achieved by a multirange algorithm in which inde-
pendent random walks were used for different energy sub-
intervals and the resultant pieces were then combined to ob-
tain the density of states. The possibility of producing
accurate estimates for critical-point anomalies on large lat-
tices establishes, at least it is hoped, the Wang-Landau

method and similar techniques as new and important tools
for evaluating equilibrium properties of models showing
complex properties of substances, such as systems with com-
peting interactions and spin glass models. Therefore it is of
interest to understand how we can implement these methods
in the best way for the extraction of critical parameters using
the finite-size scaling theory. This paper considers an impor-
tant aspect of this problem and aims to introduce a simple
and practical route, through which we can substantially im-
prove both accuracy and efficiency of the above methods. It
will be shown that only a relatively small part of spectral
degeneracies is needed in order to obtain a good estimation
of critical properties. This part of the total energy range can
be easily identified. In Sec. II we present an outline of the
method which one can use to identify the subspace of the
energy space that determines the specific-heat peak behavior.
Also a very brief description of the multirange Wang-Landau
method is presented. In Sec. III the proposed method is
tested for the plane square Ising lattice where the finite-size
scaling behavior is known from the work of Ferdinand and
M. Fisher[18]. In Sec. IV we discuss the critical-point spe-
cific heat anomaly behavior of the simple cubic Ising lattice.
We present estimates for the critical temperature and the as-
sociated critical exponents and compare our results with ex-
isting estimates. It is shown that the extension of the used
critical energy subspace scales as predicted in the theory pre-
sented in Sec. II and this provides an independent estimation
of the ratio a /n of critical exponents. We summarize our
results and conclusions in Sec. V.

II. ESTIMATION OF THE CRITICAL PART
OF THE ENERGY SPACE

Let us consider the zero-field Ising model on theL3L
=N square and theL3L3L=N cubic lattices:*Corresponding author. Electronic address: amalakis@cc.uoa.gr
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H = − Jo
ki j l

SiSj, Si = ± 1, i = 1,2, . . . ,N. s1d

The behavior of finite systems near the infinite lattice critical
temperatureTc can be described by finite-size scaling theory
[19–21]. For the three-dimensional Ising model the maxima
of the finite-size specific heatsCL

* are expected to scale as

CL
* = c + bLa/ns1 + ¯ d, s2ad

wherea andn are the critical exponents of the specific heat
and the correlation length, respectively. For the square Ising
lattice the(logarithmic) scaling of the maxima of the finite-
size specific heatsCL

* is known from the work of A. Ferdi-
nand and Fisher[18] and will be considered in the next sec-
tion. The shift of the “pseudocritical” temperaturesTL

*

(defined by the location of the specific-heat peaks) is de-
scribed by a similar power law for both square and cubic
Ising lattices:

TL
* = Tc + cL−1/ns1 + ¯ d. s2bd

Given an approximation for the density of statesGsEd ob-
tained, for instance, via the Wang-Landau method, the spe-
cific heat at any temperature can be estimated and thus the
pseudocritical temperatureTL

* and the maximum of the spe-
cific heat are easily obtained. Therefore applying such a
method to finite systems, we can accumulate data and
through the finite-size scaling mechanism extract the
asymptotic critical behavior. Of course, this has been done in
the past using the more traditional Monte Carlo methods
(particularly importance sampling techniques). Using these
later methods we have to simulate the system in a range of
temperatures around the pseudocritical temperatureTL

* . For
each such temperature we have to perform our simulations
for a suitably long period of time for “equilibration” and then
make a large number of independent measurements for aver-
aging. In effect, this usually means a very large number(sev-
eral millions) of Monte Carlo steps determined mainly by the
critical slowing down phenomenon[5,6]. On the other side,
using the Wang-Landau method one has “at once” an ap-
proximation of the specific heat at any temperature and thus,
as mentioned above, the pseudocritical temperatureTL

* and
the maximum of the specific heat are easily obtained. How-
ever, executing a Wang-Landau random walk process in the
total energy space can also be time consuming and, more-
over, the almost unavoidable multirange algorithm will defi-
nitely introduce some “uncontrollable” errors. These errors
are “histogram errors” which may propagate and amplify
through the process of connecting the energy ranges in a
multirange approach. Note that by applying separately a his-
togram flatness criterion[such as Eq.(11)] in each energy
range does not produce necessarily the same level of flatness
in the total energy range. It is therefore profitable if we can
estimate, with the same or even better accuracy, the specific
heat peaks using only a small part of the energy space.

In order to proceed we express the value of the specific
heat, at any temperature, with the help of the usual statistical
sum skB=1d:

CLsTd = N−1T−2HZ−1 o
Emin

Emax

E2 expfFsEdg

− SZ−1 o
Emin

Emax

E expfFsEdgD2J , s3ad

whereFsEd and the microcanonical entropySsEd are defined
by

FsEd = SsEd − bE, SsEd = ln GsEd s3bd

while the functionZ by

Z = o
Emin

Emax

expfFsEdg. s3cd

Note thatZ is the partition function in case one uses the total
energy spectrum andGsEd is properly normalized. The
above expressions give, in fact, an approximation for the
values and the maximum of the specific heat since Wang-
Landau simulations provide us with an approximate DOS
GsEd.

Now let Ẽ denote the value of energy producing the maxi-
mum term in the sum(3c) of the (partition) function at a
temperature of our interest. Eventually, we will concentrate
on the pseudocritical temperatureTL

* or some temperatures
close to this(for instance the exact critical temperatureTc,
whenever this temperature is known). We may define a set of
approximations to the specific-heat values by restricting the
statistical sums in Eqs.(3a)–(3c) to energy ranges around
this value. We define the following energy subranges of the
total energy rangesEmin,Emaxd:

sẼ−,Ẽ+d, Ẽ± = Ẽ ± D±, D± ù 0. s4d

Accordingly, the value of the specific heat at the temperature
of interest(for instance, the value of the peaks at the pseud-
ocritical temperatureTL

* ) are approximated by

CLsẼ−,Ẽ+d ; CLsD±d

= N−1T−2HZ̃−1o
Ẽ−

Ẽ+

E2 expfF̃sEdg

−SZ̃−1o
Ẽ−

Ẽ+

E expfF̃sEdgD2J , s5ad

where

F̃sEd = fSsEd − bEg − fSsẼd − bẼg s5bd

and

Z̃ = o
Ẽ−

Ẽ+

expfF̃sEdg. s5cd

Depending on the extension of the subranges used in Eqs.(5)
the above sequence may give good approximations to the
specific heat values.
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As mentioned earlier, finite-size analysis depends on the
accuracy of the finite lattice data, in a very sensitive way.
Therefore one may question the utility of introducing further
approximations to an already approximate scheme. To an-
swer this we demand that the new errors are much smaller
than the already existing ones from the DOS approximation.

Since by definitionF̃sEd is negative we can easily see that

for large lattices “extreme” values of energy(far from Ẽ) will
have an extremely small contribution to the statistical sums
since these terms decay exponentially fast with respect to the

distance fromẼ. It follows that, if we request a specified
accuracy(assume that our approximations satisfy some strict
criteria), then we may greatly restrict the necessary energy
range, in which DOS should be sampled. If this is so, then
we not only reduce computer time for the calculation of the
approximate DOS, but we also improve accuracy. Indeed, by
restricting the energy space we should expect a minimization
of “Wang-Landau errors” even in cases where a multirange
approach is used.

To make this idea concrete we demand that the relative
errors introduced by the restriction(5) are smaller than a
given numberr. Moreover, we assume that these relative
errors are considerably smaller than those produced by the
Wang-Landau scheme on the values of the specific heat. This
restriction is well defined if we know the exact DOS for a
finite system. Given any small number and the exact DOS
one can easily calculate the minimum energy subspace
(MES), compatible with the above restriction. An algorith-
mic approach is described below in Eqs.(9a)–(9c). The re-
sulting subspace(its end points and its extension) depends,
of course, on the temperature, on the value of the small pa-
rameterr, and on the lattice size. We write for its extension

DẼ

DẼ ; DẼsT,r,Ld ; minsẼ+ − Ẽ−d:UCLsD±d
CL

− 1U ø r .

s6d

Closely related to the notion of the thermodynamic
equivalence of ensembles and to the central limit theorem is
here the idea that, for any temperature, the extension of the
energy subspace determining the behavior of the system is

much smaller than the total energy range:DẼsT,r ,Ld
! sEmax–Emind. Thus our proposition of using Wang-Landau
sampling in the critical MES is quite obvious. We should
expect that the extension of the above-defined restricted part
of the energy space would be of the same order with the
standard deviation of the energy distribution at any tempera-
ture. Therefore we assume that given a small constant value
for r

DẼ ~ sE = ÎNT2C. s7d

From the central limit theorem we know that, far from the
critical point, the energy distribution approaches a Gaussian
distribution and the energy subspace determining all thermo-
dynamic properties is mostly of the order ofÎN. Close to a
critical point the order of the extension of MES is not
known, but assuming thermodynamic equivalence of en-

sembles one should expect the extension of critical MES to
be !N. Although the energy distribution will diverge from
the Gaussian, it still seems reasonable to describe the exten-

sions of the critical MES,DẼ* = DẼsTL
* ,r ,Ld, by Eq. (7).

Therefore using Eq.(2a) we may conclude that these exten-

sions, as well as the valuesDẼc=DẼsTc,r ,Ld, should scale
as

DẼ*

Ld/2 < La/2n. s8d

In order to obtain the MES from the exact DOS or from a
given approximation of DOS,GsEd, we define successive
“minimal” approximations to the specific-heat values:

CLs jd ; CLsD j
−,D j

+d,

D j+1
± = D j

± ± u j+1
± , D1

± = 0, j = 1,2, . . . . s9ad

One of the aboveu increments is chosen to be 1 and the

other 0 according to which side ofẼ is producing at the
current stage the best approximation:

su j+1
+ = 1,u j+1

− = 0d ⇔ uCL − CLsD j
−,D j

+ + 1du

ø uCL − CLsD j
− + 1,D j

+du, s9bd

su j+1
+ = 0,u j+1

− = 1d ⇔ uCL − CLsD j
−,D j

+ + 1du

. uCL − CLsD j
− + 1,D j

+du. s9cd

Accordingly the sequence of relative errors for the specific-
heat valuessr jd is given by

r j = UCLs jd
CL

− 1U . s9dd

We now fix our requirement of accuracy by specifying a
particular level of accuracy for all finite lattices. In effect, we

define the(critical) MES as the subspace centered atẼ sẼ* d
corresponding to the first member of the above sequence(9)
satisfying:r j ø r. Demanding the same level of accuracy for
all lattice sizes, we produce a size dependence on all param-
eters of the above energy ranges. That is, we should expect

that the “center” ẼsT,Ld and the end pointsE−sT,r ,Ld,
E+sT,r ,Ld of the (critical) MES are all functions ofL. In

particular, the extensionsDẼ* = DẼsTL
* ,r ,Ld of the critical

MES should obey the scaling law(8). It is therefore possible
to find approximations of these functions using the total en-
ergy range for small lattices and then extrapolate to estimate
the critical MES for larger lattices. A slightly wider energy
subspace is easily predicted by extrapolating from smaller
lattices. Furthermore, working in a wider range we can use
our approximate DOS to have a very good approximation of
the critical MES(CrMES) and thus check the validity of the
proposed scaling law(8). This is possible because the ap-
proximations are expected to obey an exponentially fast con-

vergence outside the energy range centered inẼ. We may
also apply the abover-dependent scheme for several values
of the accuracy parameterr. Once the accuracy criteria have
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been satisfied for a given value ofr and the energy range is
wide enough to accurately estimate the corresponding
CrMES, we can also estimate the extensions of CrMES for
any larger value of the parameterr.

Let us now briefly discuss the main points of our imple-
mentation of the Wang-Landau method. For the application
of the algorithm in the multirange approach we follow the
description of Schulzet al., 2003 [16], i.e., whenever the
energy range is restricted we use the updating scheme 2 de-
scribed in that paper. Consider the restriction of the random
walk in a particular energy rangeI =fE1,E2g and assume that
the random walk is at the border of the range I. Then, the
next spin-flip attempt is determined by the modified Me-
tropolis acceptance ratio:

A = Hminh1,GsEd/GsE + DEdj, sE + DEd P I

0, sE + DEd ¹ I .
J s10d

The random walk is not allowed to move outside of the
energy range, and we always update the histogram value
HsEd→HsEd+1 and the DOS valueGsEd→GsEd* f j after a
spin-flip trial. Here, of course,f j is the value of the Wang-
Landau modification factor[13–17], at the j th iteration, in
the processsf → f1/2d of reducing its value to 1, where the
detailed balance condition is satisfied. In all our simulations
the Wang-Landau modification(or the control parameter),
was chosen to have the initial value:f j=1=e<2.718 28. . . .
When starting a new iteration the control parameter is
changed according tof j+1=Îf j , j =1,2, . . .[13]. Also, we use
the following criterion for the histogram flatness:

maxHsEd – minHsEd
maxHsEd

ø 0.05. s11d

Using a multirange approach, we divide the total energy
range or the expected MES in several subintervals overlap-
ping in one or several points at their ends. These subintervals
can be then joined at the end to obtain the DOS in the range
of interest. In joining two neighboring subintervals the de-
generacies in one of the two have to be adjusted so that its
end-point degeneracies conform to the corresponding degen-
eracies of the neighboring interval. Obviously, this is a pro-
cess that may propagate “histogram errors,” but from the
description above it is apparent that one can arrange this
process to leave unchanged the “central subinterval degen-
eracies.” Since this subinterval can be chosen to have its

center close to the energy valueẼsTL
* d, this choice will be

optimal and it will produce relatively small errors. Usually,
when one is sampling the total DOS, a normalization condi-
tion is applied. This condition may concern the ground state
degeneracy, or the total number of states of the system, or
even some convenient combination of known degeneracies.
However, normalization does not effect the values of the

specific heat, so we may conveniently chooseGsẼ8d=1,

where Ẽ8 is an initial guess forẼsTL
* d which serves as the

center of the “central subinterval.” Furthermore, since the
central subinterval is the most influential in the determina-
tion of the specific-heat peak, we have chosen the subinter-
vals to have varying lengths(of the order of 50–160 energy

levels) with the largest to be the central subinterval(100–160
energy levels). Finally, in each case we observed the behav-
ior in a sample of several independent runs and the
j-iteration processsf j+1=Îf j , j =1,2, . . .d is carried out, until
fluctuations around a “mean” for the specific-heat peak are
obtained. In almost all cases, this occurred in the range be-
tween 20 and 26 Wang-Landau iterations for the modifica-
tion factor. Figure 1 shows the application of Monte Carlo
approaches to the specific heat peak for a 50350 square
Ising lattice. The traditional Metropolis importance sam-
pling, the Wang-Landau multirange sampling of the total
DOS and the proposed in this paper “critical minimum en-
ergy subspace(CrMES)” sampling are compared to the exact
specific-heat peak.

III. A TEST CASE: THE SQUARE ISING LATTICE

Ferdinand and Fisher[18] have asymptotically analyzed
the critical point anomaly of am3n plane square Ising lat-
tice with periodic boundary conditions. In that paper, which
has been one of the most influential papers in the develop-
ment of finite-size scaling theory, an explicit expansion for
the specific heat close to the critical point is described. We
shall use their asymptotic expansion to test our simulational
data obtained via Wang-Landau scheme in the CrMES. This
is a first examination of our proposal for estimating the criti-
cal behavior through a “CrMES Wang-Landau scheme.” Fur-
thermore, by performing the Wang-Landau random walk in a
slightly wider range than the CrMES, we can estimate the
finite-size extensions of the CrMES and explore the possibil-
ity of estimating the critical behavior using the scaling law
proposed in Eq.(8).

FIG. 1. Comparative diagram showing the exact specific heat(in
units of kB) for a 50350 square Ising lattice(solid line) and ap-
proximate curves corresponding to(i) metropolis importance sam-
pling. Average behavior over 20 samples. For each temperature we
have used after equilibration about,104 Monte Carlo sweeps for
averaging.(ii ) Wang-Landau multirange sampling(four indepen-
dent random walks transversing the total energy range.(iii ) Wang-
Landau multirange sampling applied to the critical energy subspace
(CrMES) (i.e., 20 independent random walks ran in a slightly wider
energy range of extension,450 energy levels). Note that(ii ) and
(iii ) have approximately the same time requirements. Obviously the
improved accuracy of the proposed scheme is apparent mainly be-
cause, for the same available time, one can perform more indepen-
dent WL random walks.
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Since for the two-dimensional case the exact critical tem-
peratureTc is known, it is useful to apply the “CrMES Wang-
Landau scheme” for both the exact critical temperature and
the pseudocritical temperatureTL

* . Actually, this means that
we have to run the Wang-Landau random walk in a wider
range. As an example, let us give details for the case of a
50350 lattice. Counting the energy levels asiesEd=sE
+2Nd /4+1, that is starting the enumeration from the ground
state, the energy levels corresponding to the “centers” for the

two temperatures of interest areie(ẼsTcd)=354 and

ie(ẼsTL
* d)=378. The corresponding extensions for a chosen

level of accuracyr =10−6 are 392 and 394, respectively. Note
that these “extensions” are measured in terms of the conve-
nient counting integer variableiesEd. The extensions of the
critical ranges are of the same order but their centers do not
coincide (reflecting the shift of the pseudocritical tempera-
ture). Their displacement is 24 energy levels, so in order to
achieve[for the specific-heat approximation(5)] a relative
error of the order ofr =10−6, we should execute the Wang-
Landau random walk in a range of the order of 420s394
+24d energy levels. If we furthermore request to accurately
estimate the extensions of the corresponding MES, we
should consider a slightly wider(from each side) range,
which in the case of a 50350 lattice modifies the required
range of the order of 450 energy levels. Thus the number of
energy levels for the Wang-Landau random walk is greatly
reduced, since this number should be compared to a total of
2500 energy levels for the 50350 lattice. A practical method
for guessing the wider range necessary for an accurate esti-
mation of the extensions of the CrMES may be as follows.

We can easily devise a “self-consistent” test to inspect from
the derived DOS(in the wider range) whether or not the
estimated critical extensions are completely determined in
this wider range. This is easily accomplished by using suc-
cessively increasing ranges, starting from the estimated
CrMES ranges, and observing the variation in the estimated
extensions as the range grows up to the final wider version.
Because of the exponential convergence mentioned earlier,
this procedure will converge very fast. Thus one can manage
to know after his runs whether the originally “guessed”(or
estimated through an extrapolation scheme) range was large
enough to produce accurately the extensions of CrMES. Af-
ter a successful run for a given lattice size we may know, if
we wish, to what percentage was necessary to increase the
CrMES (from each side) in order to accurately estimate its
extension. This information may be then used for extrapola-
tion to larger lattice sizes.

Table I presents the pseudocritical temperatures, the cor-
responding values of the specific heats as well as the values
of the specific heats at the exact critical temperature for lat-
tice sizesL=10−100. The results forL=10−50 were ob-
tained using the exact DOS derived by executing the algo-
rithm provided by Ref.[22], while the estimates for the
larger lattices by the proposed CrMES Wang-Landau
scheme. For the lattice 50350 both exact and approximate
results are shown for comparison. For each lattice size we
have considered 20 random walks in order to improve statis-
tics. To obtain estimates of the errors, the specific-heat values
were calculated separately from the DOS of each random
walk (thus taking afterwards suitable averages), but also
from the averaged DOS of the sample. We have also ob-

TABLE I. Exact and approximate Wang-Landau(WL) results for the square Ising model. Pseudocritical
temperaturesTL

* , corresponding specific-heat valuesCL
* , and specific-heat values at the exact critical tempera-

turesCLsTcd. The exact DOS has been obtained by the algorithm provided in Ref.[22].

L TL
* : exact TL

* : WL CL
* : exact CL

* : WL CLsTcd: exact CLsTcd: WL

10 2.34459 1.30906 1.26002

14 2.32407 1.48356 1.43117

20 2.30820 1.66628 1.61116

24 2.30190 1.75899 1.70273

30 2.29553 1.87193 1.81450

34 2.29251 1.93507 1.87706

40 2.28909 2.01686 1.95818

44 2.28731 2.06473 2.00570

50 2.28518 2.2853(3) 2.12885 2.1338(150) 2.06938 2.0791(150)

54 2.2835(3) 2.1690(200) 2.1150(250)

60 2.2825(3) 2.2275(300) 2.1620(350)

64 2.2816(3) 2.2523(350) 2.1860(300)

70 2.2809(3) 2.2910(350) 2.2242(350)

74 2.2805(4) 2.3240(400) 2.2587(400)

80 2.2796(4) 2.3630(400) 2.3000(450)

84 2.2792(4) 2.3900(450) 2.3240(500)

90 2.2781(4) 2.4200(450) 2.3650(500)

94 2.2779(4) 2.4460(500) 2.3840(500)

100 2.2775(4) 2.4710(600) 2.4120(500)
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served the variation of the estimated parameters as a function
of the order of Wang-Landau iteration in the process of re-
ducing the modification factor. Although we do not know
any general criterion for an “optimum” estimation using the
Wang-Landau technique, we think it is a good practice to
observe the variation of the estimated parameters as we pro-
ceed in higher orders of the approximate scheme. The errors
given in brackets reflect the order of the standard deviation
of averaging the separate walk estimates. Of course, using
groups of random walks one may reduce these errors but this
will not affect the estimated mean. The estimates given in
tables are averages of the two processes, i.e., mean values of
the estimates obtained from the separate walks and the esti-
mates obtained from the averaged(over a sample of 20 ran-
dom walks) DOS. The values of the 24th Wang-Landau it-
eration were used in most cases, but the behavior was
observed for the(20–26)th iterations.

Let us now see how one could try from these data to
estimate the critical parameters assuming that, at least, the
leading behavior is known. From the work of Ferdinand and
M Fisher [18] we know that close to the critical point,

CLsTd = A0 ln L + BsTd + B1sTd
ln L

L
+ B2sTd

1

L
+ ¯ ,

s12d

where the critical amplitudeA0 and the firstB coefficients
are given in Ref.[18] for both the exact critical and pseud-
ocritical temperatures(see also below). We try to fit the data
of Table I forCLsTcd andCLsTL

* d to the above expansion and
reproduce the correct amplitudes. However, it is well known
[6,23] that including many independent correction terms,
even when high-quality data are available is not a suggested
procedure, unless we have almost exact data up to very large
lattices. In all other cases, it seems that the best one can do is
to start with (or search for) the dominant correction term.
Therefore in the present case we consider only the first two
terms in the above expansion(setting the other terms zero)
and pay attention in estimating the critical amplitudeA0
(mainly) and the constantB contribution.

Fitting the finite-size values(exact and approximate,
where for the sizesL=54–100 the Wang-Landau data of
Table I are used) of the specific heat at the corresponding
pseudocritical temperatures for sizesL=10–50,L=10–100,
and L=50–100 we obtain the following estimates for the
critical amplitude and the constantB contribution:

L = 10 – 50: A0 > 0.509s1d, B * > 0.140s4d,

L = 10 – 100: A0 > 0.504s1d, B * > 0.154s5d,

L = 50 – 100 A0 > 0.494s5d, B * > 0.198s2d. s13d

Similarly, applying the same fittings for the specific-heat data
at the exact critical temperature we find

L = 10 – 50: A0 > 0.503s1d, Bc > 0.104s2d,

L = 10 – 100: A0 > 0.499s2d, Bc > 0.116s6d,

L = 50 – 100: A0 > 0.494s8d, Bc > 0.138s33d. s14d

These estimates are to be compared with the values given
in Ferdinand and Fisher[18]:

A0 = 0.494358 . . . , B * = BsTL
* d = 0.201359 . . . ,

Bc = BsTc
*d = 0.138149 . . . . s15d

As expected, the inclusion of data for larger sizes improves
the estimates and one can see that the improvements are in
the right direction. Hence one can further refine the estimates
by using more sophisticated extrapolation schemes and pos-
sibly by taking into account data for even larger lattices.

Let us now turn our attention to the verification of the
proposed in Eq.(8) scaling law for the extensions of the
CrMES. Table II presents the extensions of the MES for both
the exact critical temperature and the pseudocritical tempera-
ture for all sizes considered in Table I. Again, the extensions
presented for sizesL=10–50 were obtained using the exact
DOS while the estimates for the larger lattices were obtained
by the proposed CrMES Wang-Landau scheme and for the
50350 case both exact and approximate results are shown
as a comparison. A striking observation concerns the errors
of these artificially constructed parameters. In fact for very
large lattice sizes there are relatively small errors, while for
moderate sizes there are no errors at all. Indeed, despite the
fact that the reported errors were obtained in the same way as
in the case of the specific-heat values, the relative errors of
the extensions are smaller by a factor of 10 for the largest
lattice size usedL=100. The center of the CrMES fluctuates
from walk to walk due to the approximate DOS produced by
the Wang-Landau scheme. However, the errors in determin-
ing these central points are in general greater than the errors
in determining the extensions of MES. Table II contains the
extensions of the CrMES for three different levels of accu-
racy specified byr =10−3,10−4, andr =10−6. At this point we
note that even the largest value ofr determining the accuracy
level in Eq.(6) is smaller than the relative errors produced by
the Wang-Landau technique. The approximation proposed in
Eqs. (5), by restricting the energy space, will not introduce
errors outside the limits of the Wang-Landau accuracy. As
pointed out, our calculations were done in sufficiently wide
ranges so that the extensions of the CrMES were accurately
estimated. Note that if our runs were performed in a wide
enough range, sufficient to accurately estimate the extensions
of MES for say the third criterion, then this range would be
sufficiently wide for the estimation of the extensions corre-
sponding to any larger value ofr.

Trying to fit these extensions to an asymptotic expansion
of the form (12) we find that the dominant correction is the
third term. Thus we use the following formula:
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Csrd ; SDẼsrd
Ld/2 D2

< Asrd ln L + B1srd
ln L

L
. s16d

Table III gives the estimates for the above amplitudes for
sizes L=10–50, L=10–100, andL=50–100. Also Fig. 2
shows the behavior of these extensions versus lattice size. As
was expected on physical grounds, the extensions of CrMES
follow the same asymptotic law with the specific heat in the
critical region and provide a different independent method of

estimating critical behavior via the finite-size scaling analy-

sis. Since,DẼc>DẼ*−2 for all lattice sizes, the extensions
of the CrMES at the exact critical temperature follow the
same scaling law. We end this section by noting that one can
use the data in Table I to estimate from the law(2b) the
critical exponentn and the critical temperatureTc.

IV. THREE-DIMENSIONAL ISING MODEL

Despite the intense effort made over the last decades, the
three-dimensional Ising model has defied exact solution

TABLE II. Critical minimum energy subspace(CrMES) extensions for the square Ising model calculated for the three predefined levels
of accuracyr. Note that the relative errors for these extensions are much smaller than those for the corresponding specific heats.

L

exact

DẼ* sr1da
WL

DẼ* sr1d
exact

DẼ* sr2da
WL

DẼ* sr2d
exact

DẼ* sr3da
WL

DẼ* sr3d
exact

DẼcsr1d
WL

DẼcsr1d
exact

DẼcsr2d
WL

DẼcsr2d
exact

DẼcsr3d
WL

DẼcsr3d

10 38 40 45 36 39 43

14 63 68 74 62 66 72

20 101 111 127 99 109 126

24 126 140 161 124 138 159

30 165 184 213 163 182 211

34 191 213 248 190 211 246

40 232 259 302 230 257 300

44 259 290 339 257 288 336

50 301 301 337 337 394 394 299 299 335 335 392 392

54 329 368 432 327 366 429

60 371 416 489 369 414 486

64 400 448 527 398 446 524

70 442(1) 497 584(1) 440(1) 494(1) 582

74 472(1) 530(1) 624(1) 470(1) 528(1) 621(1)

80 516(1) 580(2) 682(2) 514(1) 577(1) 679(2)

84 545(1) 613(2) 722(2) 543(1) 610(2) 719(2)

90 589(1) 663(2) 781(2) 587(1) 660(2) 778(2)

94 619(2) 696(2) 821(2) 616(2) 693(2) 818(2)

100 662(2) 745(2) 881(2) 659(2) 742(2) 877(2)

ar1=10−3, r2=10−4, andr3=10−6.

TABLE III. Estimates of amplitudes obtained by fitting Eq.(16)
to the CrMES extensions presented in Table II for the square Ising
model.

L Asrd B1srd

10–50 Csr1d 10.08(8) −34s2d
Csr2d 12.81(11) −55s3d
Csr3da 17.81(16) −92s4d

10–100 Csr1d 9.90(3) −32s1d
Csr2d 12.65(4) −52s1d
Csr3da 17.75(5) −92s2d

50–100 Csr1d 9.83(3) −29s2d
Csr2d 12.60(4) −51s2d
Csr3da 17.81(3) −96s2d

aMean value over the three fitting ranges:Asr3d=17.80s6d, B1sr3d
=−93s4d.

FIG. 2. Demonstration of the logarithmic scaling law(16) of the
CrMES extensions for the square Ising model, shown for the three
levels of accuracy chosen. Note that the extensionsDE* are defined
to be dimensionless as discussed in Sec. III.
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[24,25] and though it has been investigated extensively by
various numerical methods, is still a matter of sophisticated
numerical analysis[26–54]. The critical properties of the
model, i.e., the critical temperatureTc, the thermal and mag-
netic scaling exponentsyt andyh, and also the leading ther-
mal irrelevant exponentyi, seem to be known with good
accuracy[48]. However, the absence of exact results creates,
at least in principle, a motive for disagreements[48,53]. For
many years reliable estimates forTc and the critical expo-
nents have been obtained by series-expansion data,
«-expansion studies, Monte Carlo renormalization group
studies, and the coherent anomaly method[26–33,39–44,54].

The traditional Monte Carlo sampling, importance sam-
pling, and histogram techniques, have been used also to
investigate the three-dimensional Ising model
[23,34–38,46–48] but only recently[48] have such studies
provided accurate estimates of the critical exponents. There
are two reasons for the modest accuracy obtained in these
Monte Carlo simulations. First, extended runs are necessary
to reduce the systematic and statistical errors, which arise
due to the finite number of samples taken. Second, correc-
tions to scaling are much more important in three than in two
dimensions. The leading irrelevant thermal exponent for the
three-dimensional Ising model has the valueyi =−0.821s5d
[48] and this means that corrections decay relatively slowly.
The two effects of finite sampling time and finite system size
become intertwined and jeopardize the finite-size scaling
analysis. In particular, it has been very difficult to accurately
estimate the thermal critical exponent from finite-size scaling
analysis of Monte Carlo specific-heat data close to the pseud-
ocritical temperatures.

Blote et al. [46] have presented an extensive Monte Carlo
simultaneous analysis of three cubic Ising models belonging
to the same universality class. Their data were obtained by
several “cluster” algorithms and their analysis included a
finite-size scaling study for the specific-heat anomaly of the
simple cubic Ising model(Sec. 5.2 in Ref.[46]). Further-
more, in a recent analogous study Deng and Blote[48] pro-
posed a different “better” route for the estimation of the ther-
mal exponent. In this latter study, a quantitysQpd that
correlates the magnetization distribution with the energy
density[48], which has a stronger divergence with respect to
the system size, is used. In general, it appears that the tradi-
tional route for the estimation of the thermal critical expo-
nent, via specific-heat data, has been overlooked over the
years because of the problems faced in trying to fit these
data. This is entirely understandable by comparing the high
accuracy obtained in the recent paper by Deng and Blote[48]
fyt=1.5868s3dg, with the modest estimatefyt=1.60s2dg in
Blote et al. [46]. In view of this situation, it is of interest to
apply our proposal for estimation of the DOS via a Wang-
Landau random walk in the CrMES and study again the so
produced numerical data for the specific-heat peaks. Further-
more, it is most appealing to examine whether the data for
the r-dependent extensions of the CrMES give, when sub-
jected to finite-size analysis, estimates in agreement with the
already known values of the thermal critical exponent.

We may, following Bloteet al. [46], use an expansion for
the specific-heat values close to the critical point of the form

CL = L2yt−dfqo + q1sK − KcdLytg + po + rL2yt−d+yi + soL
yt−d.

s17d

In this expansion the renormalization group behavior of the
free energy with a scale factorsld has been used. Moreover,
the existence of an irrelevant field has been assumed and
some terms from the more general expansion have been
omitted as dominated by the correction terms included in Eq.
(17) [see Eq.(A2) and discussion in Ref.[46]]. Blote et al.
[46] used a fixed value for the irrelevant exponent:
yi=−0.83 and thevalueKc=0.221 654 7sK=J/KBTd for the
critical temperature. Thus, in order to estimate the thermal
critical exponentyt, five more parameterssqo,q1,po,r ,sod
are involved in Eq.s17d. This “many-parametric” fit gave
the estimateyt=1.60s2d, but the errors reported of all five
parameters were very largesup to 100%d even for the
coefficientsqo sq1d of the leading singularity.

We applied the CrMES Wang-Landau scheme to obtain
the DOS for lattice sizesL=4–32 for thesimple cubic Ising
lattice. For each lattice, several random walks on the selected
restricted energy space were performed for averaging. The
numbers of these walks varied with the lattice size, ranging
from 30 walks for the sizeL=4, to 100walks for the size
L=32. We used the same procedures for averaging and esti-
mating the errors, described in the previous section. In this
way we obtained data for the specific heat in the critical
region following the method described in Sec. II. We also
attempted a similar analysis, based on the expansion(17),
fixing the irrelevant exponent to the valueyi =−0.821 from
Deng and Blote[48]. In particular, we concentrated on three
temperatures: the pseudocritical temperaturesTL

* , a “good”
approximationTc8=4.51152. . .(Kc=0.221 654 7[46]) for the
exact critical temperatureTc, and finally a “lower” tempera-

ture defined for each lattice byT̂L=2TL
* −Tc8. Figure 3 shows

the values of the specific heat at these temperatures as func-
tion of the lattice size. In Table IV we present our estimates
for the pseudocritical temperaturesTL

* , the corresponding
values of the specific heatCL

* and the extensions of the criti-

cal minimum energy subspaces(CrMES) DẼ* srd for the
three levels of accuracyr =10−3, 10−4, 10−6. From Fig. 3 one
can observe a rather smooth behavior with relatively small

FIG. 3. Specific-heat values(in units of kB) of the cubic Ising
model for the three temperatures mentioned in the text.
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errors. The estimates for the lower temperatureT̂L seem to be
the most accurate. However, our attempt to fit these data in
the expansion(17) produced modest estimates for the ther-
mal exponent and very large errors for almost all other pa-
rameters. We found estimates of the same order with those
given in Bloteet al. [46], at least for the dominant terms of
the expansion, but such fittings are not reliable since the
errors in all coefficients are very large.

In order to suppress the errors we tried to omit further
terms from the expansion and we searched for stable forms
as we disregarded the smaller lattice sizes from the fittings.
Thus we have observed the fittings, for several alternative
truncations of the expansion, in the following six successive
intervals: L=4–32,6–32, . . . ,14–32.Among other possi-
bilities, we kept(as nonzero) only the correction terms with
coefficientsqo and r in Eq. (17). The resulting estimates for
the thermal exponent shift to lower values as we move to
larger-size intervals. Thus, although some of the estimates
seem to be very close to the expected value of the critical
thermal exponent, the overall behavior is rather unsettled
producing estimates foryt in a rather wide range: 1.56–1.62.
An explanation for this behavior may be the following: as we
move to larger lattice sizes the relative contribution of the
various correction terms is changing and this make the analy-
sis for these relatively small sizes very sensitive. However,
some quite acceptable exceptions will be now mentioned:
Consider, the specific-heat values at the temperatureTc8
=4.51152. . . and fix the value of the constant contribution in
the neighborhood ofpo>−1.5, then allowqo and r to vary
and make successive fittings for all intervals fromL=4–32
up to L=14–32. These six fittings are very good and stable
and produce estimates with very small errors. They give ap-
proximately the same value for the thermal exponent but also
for the coefficientsqo andr. This is true for even larger-size

ranges but with larger errors. Considering the mean and the
standard deviation of these six estimates(see the Appendix)
we find

yt = 1.5878s31d, qo = 2.08s6d, r = − 0.43s20d. s18d

The above values should be compared with the values
given in Bloteet al. [46]. Our error limits are about ten times
smaller and our estimate for the thermal exponent is very
close to the value given by Deng and Blote[48] fyt

=1.5868s3dg. The constant term and the main amplitudeqo

are just marginally in agreement with the values in Bloteet
al. [46] [po=−0.8s7d andqo=1.5s5d]. This is a good coinci-
dence and we may speculate that this exceptional case is very
close to the exact result. Its appearance may be well related
to the absence of the term with coefficientq1 in the expan-
sion, which for the other two temperatures may cause fitting
problems. Furthermore, a stable sequence of fittings using

the specific-heat values at the lower temperatureT̂L=2TL
*

−Tc8 is also given in the Appendix. This sequence produces
estimates for the thermal exponentyt, comparable with that
given in Eq.(18). Finally, note that we may use the values
for TL

* to estimate the critical temperatureTc and/or the criti-
cal exponentn from Eq. (2b). The fitting for the caseL
=12–32 provides good values for both these critical param-
eters, without even using correction terms. To obtain values
comparable in accuracy, with the best known estimates, a
study of several different thermodynamic quantities may be
necessary(see, for instance, Ref.[23]).

Let us now examine the verification of our proposal for
the scaling of the extensions of the CrMES. The estimates
for these extensions are included in Table IV. Once again one
can observe that the reported relative errors for these exten-
sions (for the three levels of accuracy) are significantly

TABLE IV. Estimates obtained via Wang-Landau CrMES scheme described in this paper for the cubic
Ising model. Pseudocritical temperaturesTL

* , corresponding specific-heat values, and CrMES extensions for
the three levels of accuracyr.

L TL
* CsTL

* d DẼ* sr1da DẼ* sr2da DẼ* sr3da

4 4.1150(20) 1.2242(30) 45 47 51

6 4.2752(20) 1.5632(50) 122 133 148

8 4.3495(20) 1.7920(70) 215 236 269

10 4.3944(20) 1.9720(100) 325 359 413

12 4.4210(20) 2.1180(170) 453 502 579

14 4.4395(30) 2.2365(240) 596 661 766

16 4.4532(30) 2.3243(380) 753 836 971

18 4.4623(30) 2.4177(390) 925(1) 1029(2) 1195(2)

20 4.4702(30) 2.4955(400) 1106(1) 1232(2) 1433(2)

22 4.4758(30) 2.5670(420) 1302(2) 1451(2) 1690(2)

24 4.4796(30) 2.6242(450) 1504(6) 1677(6) 1954(10)

26 4.4854(35) 2.6648(750) 1722(8) 1926(8) 2244(10)

28 4.4879(45) 2.6966(800) 1951(8) 2178(8) 2544(10)

30 4.4911(45) 2.7325(900) 2178(10) 2432(10) 2845(10)

32 4.4929(50) 2.7688(900) 2430(10) 2716(10) 3176(12)

ar1=10−3, r2=10−4, andr3=10−6.
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smaller(by a factor of 10) than those concerning the values
of the specific heat. It is also remarkable that for sizes up to
L=16 there are no errors at all for these extensions. Note that
even the restriction of the energy space using the larger value

of the accuracy levelsrd will not introduce errors in the
specific heat, larger than those generated from the Wang-
Landau random walk. Thus if we minimize our requirements
so that we only calculate the value of the specific heat at the
pseudocritical temperature, then the energy subspace needed
is only 1/20 of the total energy space for the 32332332
cubic lattice. The extended energy ranges used for the esti-
mation of the parameters in Table IV and the values of the
specific heat at the temperaturesTc8, TL

* are summarized in
the Appendix(see Table VI).

When the extensions of the CrMES are subjected to a
finite-size analysis using a many-parametric expansion as
Eq. (17), we again find modest estimates for the thermal
exponents and large errors in all other parameters. However,
we have discovered that the dominant contributions now cor-
respond to the terms with coefficientsqo and r in Eq. (17).
Introducing a more convenient notation we assume that these
extensions scale as

Csrd ; SDẼr
*

Ld/2D2

. qsrdL2yt−d + psrdL2yt−d+yi . s19d

Table V shows successive fits on the above form for the three
levels of accuracy. As previously the value of the irrelevant
exponent is fixed to the valueyi =−0.821, but no other pa-
rameter is fixed. The last two fittings give close agreement
(almost to the third decimal place) with the best known es-
timate of the thermal critical exponent[48]. There is a small
shift of the estimated thermal critical exponent to a lower
value as we move to larger lattice sizes indicating possible
existence of further correction terms. This shift is similar, but

TABLE V. Fitting attempts using Eq.(19) to estimate the ther-
mal exponentyt from the CrMES extensions shown in Table IV for
the cubic Ising model. Note that the mean values(given in the
footnote below) for yt are close to the valueyt=1.5878s31d given in
our proposal(18) and to the valueyt=1.5868s3d of Ref. [48].

L qsrd psrd yt

4–32 Csr1d 108(2) −261s7d 1.596(3)

Csr2d 132(3) −328s10d 1.601(3)

Csr3d 170(3) −440s11d 1.610(3)

6–32 Csr1d 107(4) −255s14d 1.598(5)

Csr2d 130(5) −321s19d 1.602(5)

Csr3d 179(5) −476s18d 1.603(3)

8–32a Csr1d 115(5) −293s20d 1.588(5)a

Csr2d 142(6) −373s27d 1.591(6)a

Csr3d 189(6) −524s27d 1.596(4)a

10–32b Csr1d 129(6) −356s25d 1.574(6)b

Csr2d 155(9) −439s40d 1.579(7)b

Csr3d 203(8) −589s39d 1.587(6)b

aMean value(over the three levels of accuracy) of the thermal
exponentyt=1.592s4d.
bMean value(over the three levels of accuracy) of the thermal
exponentyt=1.580s7d.

TABLE VI. Specific-heat values for the cubic Ising model at the two temperaturesT̂L andTc8 defined in
the text(see also footnote). The counting variablesiesEmin8 d andiesEmax8 d, whereiesEd=sE+3Nd /4+1,specify
the extended range used in this work. The portion of the energy space used in our calculations is given in the
last column.

L CsT̂L
ad CsTc8d iesEmin8 d iesEmax8 d sEmax8 −Emin8 d / sEmax−Emind

4 0.9954(20) 0.9776(20) 1 70 0.73

6 1.3230(30) 1.2256(30) 1 170 0.52

8 1.5471(60) 1.3908(60) 30 380 0.46

10 1.7245(80) 1.5248(80) 150 670 0.35

12 1.8610(80) 1.6300(80) 360 1100 0.29

14 1.9846(150) 1.7234(150) 710 1670 0.23

16 2.0854(250) 1.8129(250) 1220 2410 0.19

18 2.1790(350) 1.8883(350) 1800 3500 0.19

20 2.2527(380) 1.9555(380) 2800 4520 0.14

22 2.3190(380) 2.0170(380) 3900 5960 0.13

24 2.3728(400) 2.0720(400) 5250 7650 0.12

26 2.4307(470) 2.1458(470) 6870 9680 0.11

28 2.4738(500) 2.1772(600) 8790 11970 0.10

30 2.5209(650) 2.2345(800) 11150 14590 0.09

32 2.5515(700) 2.2700(850) 13700 17650 0.08

aT̂L=2TL
* −Tc8, Tc8=4.51152. . .sKc8=0.221 654 7d.
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considerably smaller, with the one detected in our fittings for
the specific-heat values at the pseudocritical temperatures.
Thus we can conclude that the proposed scaling law of the
CrMES introduced in this paper is correct and can be con-
sidered as an effective technique for estimating the thermal
critical exponent.

V. CONCLUSIONS

We have presented a simple and efficient approximation
scheme, which greatly facilitates the application of Wang-
Landau sampling in large systems for the estimation of criti-
cal behavior. In particular, we have applied our proposal to
study the finite-size behavior of the specific heat for both
square and cubic Ising lattices. It has been shown that one
needs only a relatively small part of spectral degeneracies in
order to obtain good estimation of the specific-heat peaks.
We have described the outline of an algorithm for identifying
this part of the total energy range. Furthermore, a scaling law
for the finite-size behavior of the extensions of the critical
part of the minimum energy subspace(CrMES) determined
with the help of a predefined level of accuracy was proposed.
This scaling law has been verified for both models studied in
this paper and estimates of the thermal critical exponent for
the three-dimensional case were obtained through this route.
Also in the two-dimensional case the expected logarithmic
behavior was confirmed.

In this paper we have considered an important aspect of
the problem concerning the extraction of the critical behav-
ior, by employing finite-size scaling theory and the recent
methods that directly calculate the density of states of clas-
sical statistical models. Future applications of the proposed
scheme concern several models, for which we may use the
Wang-Landau technique or the broad histogram[9,10] and
transition matrix[11,12] methods. However, the main goal is
to improve accuracy and obtain high-quality data for sub-
stantially larger lattices. This may be achieved now with the
help of our proposal but the need of a comprehensive exami-
nation of all “systematic” and statistical errors of the DOS
methods is now indispensable. The errors, for example, when
implementing the Wang-Landau method are coming from
several sources. There are errors coming from the finite ac-
curacy of the histogram flatness which may propagate and
amplify through the process of connecting the energy ranges
in a multirange approach. There are also errors stemming

from the incomplete detailed balance condition. As always,
we may expect errors from the random number generation
and the usual statistical fluctuations. An “optimization” of all
these errors seems to be at this time quite demanding. The
multirange approach described in Sec. II, that leaves un-
changed the central subinterval degeneracies, is only one “in-
gredient” of such an optimization.
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APPENDIX

Here we present specific-heat values obtained by the pro-
posed CrMES Wang-Landau method and give further details
of the fitting attempts to the expansion(17) for the cubic
Ising model. Table VI gives the specific-heat values and
specifies the extended energy subspace(CrMES) used in this
paper in order to obtain the accuracy levelr =10−6 and also
estimate the extensions given in Table IV. The valuesCsTc8d
of the third column of Table VI are now fitted in the follow-
ing scaling formula:

CsTc8d = − 1.5 +qoL
2yt−3 + rL2yt−3.821. sA1d

The successive estimates for the amplitudesqo andr and the
thermal exponentyt are given in Table VII. Their mean val-
ues over the fitting ranges appear in our proposal in(18).
Finally the values ofCsT̂Ld are fitted in a more restricted
form (A2), given below. The produced estimates are shown
in Table VIII.

CsT̂Ld = − 0.3 +qoL
2yt−3 − 2L2yt−3.821. sA2d

The particular values of the expansion(17) for po andpo and
r chosen in Eqs.(A1) and (A2), a respectively, provide a
stable and convincing picture for the estimation of the ther-
mal exponent.

TABLE VII. Successive fittings for the specific-heat values
CsTc8d. Scaling expansion(A1) is used.

L qo r yt
a

4–32 2.09(2) −0.46s6d 1.5869(2)

6–32 2.04(4) −0.27s10d 1.5902(22)

8–32 2.03(6) −0.27s17d 1.5904(33)

10–32 2.03(9) −0.27s28d 1.5904(50)

12–32 2.11(13) −0.54s45d 1.5860(71)

14–32 2.17(2) −0.76s74d 1.5828(105)

aMean valueyt=1.5878s31d.

TABLE VIII. Successive fittings for the specific-heat values

CsT̂Ld. The expansion used is given in Eq.(A2).

L qo yt
a

4–32 1.633(7) 1.592(1)

6–32 1.625(9) 1.593(1)

8–32 1.627(11) 1.593(1)

10–32 1.637(13) 1.592(1)

12–32 1.650(15) 1.590(1)

14–32 1.671(15) 1.588(2)

16–32 1.692(16) 1.586(2)

18–32 1.718(14) 1.584(1)

20–32 1.733(17) 1.582(2)

aMean valueyt=1.5889s41d.
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