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Estimation of critical behavior from the density of states in classical statistical models
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We present a simple and efficient approximation scheme which greatly facilitates the extension of Wang-
Landau samplingor similar techniquésin large systems for the estimation of critical behavior. The method,
presented in an algorithmic approach, is based on a very simple idea, familiar in statistical mechanics from the
notion of thermodynamic equivalence of ensembles and the central limit theorem. It is illustrated that we can
predict with high accuracy the critical part of the energy space and by using this restricted part we can extend
our simulations to larger systems and improve the accuracy of critical parameters. It is proposed that the
extensions of the finite-size critical part of the energy space, determining the specific heat, satisfy a scaling law
involving the thermal critical exponent. The method is applied successfully for the estimation of the scaling
behavior of specific heat of both square and simple cubic Ising lattices. The proposed scaling law is verified by
estimating the thermal critical exponent from the finite-size behavior of the critical part of the energy space.
The density of states of the zero-field Ising model on these lattices is obtained via a multirange Wang-Landau
sampling.
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[. INTRODUCTION method and similar techniques as new and important tools
for evaluating equilibrium properties of models showing

In the past half century, importance sampling in the Ca;éomplex properties of substances, such as systems with com-

ir:grv;zriilaﬁ?ssivrgts)l?hznr?\;ipt%%iilig (t:)i d'\gitsr(e)go#ztrtg?thﬁds?g eting interactions and spin glass models. Therefore it is of
) - PNYSICShterest to understand how we can implement these methods
mainly for the study of critical phenomerja-6]. However, = the best way for the extraction of critical parameters usin
this standard approach has two serious disadvantages. T ¢ best way for . par . g
e finite-size scaling theory. This paper considers an impor-

partition function of the statistical model is not an output of ¢ thi bl d a introd il
such calculations and in many cases importance sampling fgnt aspect of this problem and aims to introduce a simple

trapped for significant time in valleys of rough free energyand practical route, through_whlch we can substantially im-
landscape. Over the last decade, there have been a numbe§pVve both accuracy and efficiency of the above methods. It
interesting approaches addressing these problgng4. will be shown that only a relatively small part of spectral
Recently efficient methods that directly calculate the densityl€generacies is needed in order to obtain a good estimation
of states(DOS), or the spectral degeneracy, of classical sta©Of critical properties. This part of the total energy range can
tistical models have been developed. A few remarkable exbe easily identified. In Sec. Il we present an outline of the
amples are the entrop[&,7], multicanonical[8], histogram method which one can use to identify the subspace of the
and broad histogranii9,10], transition matrix[11,12 and energy space that determines the specific-heat peak behavior.
Wang-Landau[13—-17 methods. The above methods areAlso a very brief description of the multirange Wang-Landau
thought to be the most promising ones for the application ofethod is presented. In Sec. Ill the proposed method is
finite-size analysis in data with higher accuracy. It is welltested for the plane square Ising lattice where the finite-size
known [6] that finite-size analysis is very sensitive to simu- scaling behavior is known from the work of Ferdinand and
lational errors and in most cases the asymptotic analysis mayl. Fisher[18]. In Sec. IV we discuss the critical-point spe-
become a notorious task, due to the fact that these errors majfic heat anomaly behavior of the simple cubic Ising lattice.
“interfere” with unknown correction termis]. We present estimates for the critical temperature and the as-
In this paper we concentrate on the Wang-Landau methodociated critical exponents and compare our results with ex-
[13-17. Noteworthy is that this method was applied by isting estimates. It is shown that the extension of the used
these authors on the two-dimensional Ising model producingritical energy subspace scales as predicted in the theory pre-
the density of states even on lattices as large as<Z&@®H.  sented in Sec. Il and this provides an independent estimation
This was achieved by a multirange algorithm in which inde-of the ratio a/v of critical exponents. We summarize our
pendent random walks were used for different energy subresults and conclusions in Sec. V.
intervals and the resultant pieces were then combined to ob-
tain the density of states. The possibility of producing
accurate estimates for critical-point anomalies on large lat- IIl. ESTIMATION OF THE CRITICAL PART
tices establishes, at least it is hoped, the Wang-Landau OF THE ENERGY SPACE

Let us consider the zero-field Ising model on th& L
*Corresponding author. Electronic address: amalakis@cc.uoa.gi=N square and thé X L X L=N cubic lattices:
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H= J% SS, S==#1, i=12,...N. (@) CUT) =NTZ 21 B2 exdd(E)]
Emin

The behavior of finite systems near the infinite lattice critical Emax 2
temperaturdl, can be described by finite-size scaling theory - (z—12 E exp{@(E)]) , (3a)
[19-21]. For the three-dimensional Ising model the maxima

of the finite-size specific hea@i are expected to scale as

Emin
where®(E) and the microcanonical entrof$(E) are defined

CL=c+bL(1+--), (2a) by
®(E)=S(E)-BE, SE)=InG(E) (3b)
wherea and v are the critical exponents of the specific heat | )
and the correlation length, respectively. For the square Isin/hile the functionZ by

lattice the(logarithmig scaling of the maxima of the finite- Emax
size specific heat€, is known from the work of A. Ferdi- Z=> exg®(E)]. (30)
nand and Fisheff18] and will be considered in the next sec- Ermin

tion. The shift of the “pseudocritical”’ temperaturﬁ* . . S
(defined by the location of the specific-heat paaissde- Note thatZ is the partition function in case one uses the total
energy spectrum ands(E) is properly normalized. The

scribed by a similar power law for both square and cubic . ) : o
above expressions give, in fact, an approximation for the

Ising lattices: . e .
9 values and the maximum of the specific heat since Wang-
Tt:TC+cL‘1’”(1+ ). (2b) éa(\g)jau simulations provide us with an approximate DOS
Given an approximation for the density of stat®¢E) ob- Now letE denote the value of energy producing the maxi-

tained, for instance, via the Wang-Landau method, the spenum term in the sun3c) of the (partition) function at a
cific heat at any temperature can be estimated and thus tfi@mperature of our interest. Eventually, we will concentrate
pseudocritical temperatufE and the maximum of the spe- On the pseudocritical temperatuig or some temperatures
cific heat are easily obtained. Therefore applying such &lose to this(for instance the exact critical temperaturg
method to finite systems, we can accumulate data an¥henever this temperature is knowkVe may define a set of
through the finite-size scaling mechanism extract thedPproximations to the specific-heat values by restricting the
asymptotic critical behavior. Of course, this has been done igtatistical sums in Eqg3a—3c) to energy ranges around
the past using the more traditional Monte Carlo methodghis value. We define the following energy subranges of the
(particularly importance sampling techniqueBlsing these total energy rangeEn, Emay:

later methods we have to simulate the system in a range of ~ ~ -~ =, .

temperatures around the pseudocritical temperafjiré=or (ELE), E,=E£A% A*=0. (4)

each such temperature we have to perform our simulationgccordingly, the value of the specific heat at the temperature

for a suitably long period.of time for “equilibration” and then interest(for instance, the value of the peaks at the pseud-
make a large number of independent measurements for avezyitical temperatur@i) are approximated by

aging. In effect, this usually means a very large nungbev-
eral millions of Monte Carlo steps determined mainly by the C.(E_,E,) = C (A%
critical slowing down phenomend®,6]. On the other side,

using the Wang-Landau method one has “at once” an ap- s ~_1E+ 5 ~

proximation of the specific heat at any temperature and thus, =N"T Z 2 E“ exdP(E)]

as mentioned above, the pseudocritical temperaT@rend E_

the maximum of the specific heat are easily obtained. How- £ 2

ever, executing a Wang-Landau random walk process in the N = 3 ~

total energy space can also be time consuming and, more- z 2 Eexd®(B)] ' (53
E_

over, the almost unavoidable multirange algorithm will defi-

nitely introduce some “uncontrollable” errors. These errorsyhere
are “histogram errors” which may propagate and amplify
through the process of connecting the energy ranges in a ®(E) =[S(E) - BE] - [S(E) - BE] (5b)
multirange approach. Note that by applying separately a his-

togram flatness criteriofsuch as Eq(11)] in each energy &
range does not produce necessarily the same level of flatness E,
in the total energy range. It is therefore profitable if we can 7= D exd&)(E)]. (50)

estimate, with the same or even better accuracy, the specific
heat peaks using only a small part of the energy space.

In order to proceed we express the value of the specifiDepending on the extension of the subranges used in(&ygs.
heat, at any temperature, with the help of the usual statisticahe above sequence may give good approximations to the
sum(kg=1): specific heat values.

E_
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As mentioned earlier, finite-size analysis depends on theembles one should expect the extension of critical MES to
accuracy of the finite lattice data, in a very sensitive waybe <N. Although the energy distribution will diverge from
Therefore one may question the utility of introducing furtherthe Gaussian, it still seems reasonable to describe the exten-

approximations to an already approximate scheme. To arkjons of the critical MESAE*:AE(Ti,r,L), by Eq. (7).

swer this we demand that the new errors are much smallefnerefore using Eq:2a) we may conclude that these exten-

than the already existing ones from the DOS approxmaﬂon.sions, as well as the vaIueHEC=AE(TC,r,L), should scale

Since by definitior'fi(E) is negative we can easily see that ¢
for large lattices “extreme” values of energigr from E) will _
have an extremely small contribution to the statistical sums AE*
since these terms decay exponentially fast with respect to the 92

distance fromE. It follows that, if we request a specified :

accuracyassume that our approximations satisfy some strict . In order to .Ob“’i!'” the MES from the exact DOS or fro_m a

criteria), then we may greatly restrict the necessary energ ‘|v.er'1 aplproxma'non .Of DOSG(E), we define succe.sswe

range, in which DOS should be sampled. If this is so, thenmlnlmal approximations to the specific-heat values:

we not only reduce computer time for the calculation of the C.(j)=C.(AT,AD),

approximate DOS, but we also improve accuracy. Indeed, by I

restricting the energy space we should expect a minimization t et ot +_ .

of “Wang-Landau errors” even in cases where a multirange A= A7 £ 0, 4120, j=1.2, ... (98

approach is used. One of the above increments is chosen to be 1 and the
To make this idea Concrete_ we demand that the relativg,er according to which side & is producing at the

errors introduced by the restrictiofb) are smaller than a cyrrent stage the best approximation:

given numberr. Moreover, we assume that these relative

errors are considerably smaller than those produced by the (0J-++1: 1,6,,=0) = IC, - C,_(AJ-‘,Aj+ +1)|

Wang-Landau scheme on the values of the specific heat. This _ .

restrigction is well defined if we know the exgct DOS for a <|CL- C'-(Ai + 1.4 )l (9b)

finite system. Given any small number and the exact DOS . ~ .

one can easily calculate the minimum energy subspace  (6:1=0,6,,,=1) = |C - CL(A],A] + 1)

(MES), compa‘qble W|th the above. restriction. An algorith- >|c, - CL(AT + 1,Aj+)|- (9¢)

mic approach is described below in Eq8a—9c). The re-

sulting subspacéits end points and its extensipdepends, Accordingly the sequence of relative errors for the specific-

of course, on the temperature, on the value of the small pdieat valuegr)) is given by

rameterr, and on the lattice size. We write for its extension

~ La/ZV. (8)

i C
CL
~ ~ ~ ~ | CL(A*
AE = AE(T,r,L) = min(E, - E.): ’ %— 1 <r. We now fix our requirement of accuracy by specifying a
L

particular level of accuracy for all finite lattices. In effect, we
(6) define the(critical) MES as the subspace centereddE* )

Closely related to the notion of the thermodynamiccorresponding to the first member of the above sequéd)ce
equivalence of ensembles and to the central limit theorem igatisfying:r;<r. Demanding the same level of accuracy for
here the idea that, for any temperature, the extension of th@ll lattice sizes, we produce a size dependence on all param-
energy subspace determining the behavior of the system Rfers of the above energy ranges. That is, we should expect

much smaller than the total energy rang&E(T,r,L) that the “center"E(T,L) and the end point& (T,r,L),
< (Enax—Emin)- Thus our proposition of using Wang-Landau E+(T.r,L) of the (critical) MES are all functions oL. In
sampling in the critical MES is quite obvious. We should particular, the extensionAE*=AE(Tt,r,L) of the critical
expect that the extension of the above-defined restricted paMES should obey the scaling lag8). It is therefore possible
of the energy space would be of the same order with theo find approximations of these functions using the total en-
standard deviation of the energy distribution at any temperaergy range for small lattices and then extrapolate to estimate
ture. Therefore we assume that given a small constant valu@e critical MES for larger lattices. A slightly wider energy
forr subspace is easily predicted by extrapolating from smaller
~ = lattices. Furthermore, working in a wider range we can use
AE o og = VNT°C. @) our approximate DOS to have a very good approximation of
From the central limit theorem we know that, far from the the critical MES(CrMES) and thus check the validity of the
critical point, the energy distribution approaches a GaussiaRroPosed scaling law8). This is possible because the ap-
distribution and the energy subspace determining all thermglroximations are expected to obey an exponentially fast con-
dynamic properties is mostly of the order . Close to a vergence outside the energy range centeref.itVe may
critical point the order of the extension of MES is not also apply the above-dependent scheme for several values
known, but assuming thermodynamic equivalence of enef the accuracy parameterOnce the accuracy criteria have
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exact

been satisfied for a given value ofand the energy range is

wide enough to accurately estimate the corresponding 2201 —n—hvgimpom
CrMES, we can also estimate the extensions of CrMES for 215 —o— G:MES(WL)|
any larger value of the parameter

Let us now briefly discuss the main points of our imple- 2101
mentation of the Wang-Landau method. For the application ©
of the algorithm in the multirange approach we follow the 2,05
description of Schulzt al, 2003 [16], i.e., whenever the
energy range is restricted we use the updating scheme 2 de- soo 4 Vv
scribed in that paper. Consider the restriction of the random 226 227 228 229 230 231
walk in a particular energy rande[ E;, E,] and assume that KT/J

the random walk is at the border of the range I. Then, the o . -
next spin-flip attempt is determined by the modified Me- FIG. 1. Comparative diagram showing the exact specific fieat

tropolis acceptance ratio: units of kg) for a 50X 50 square Ising latticésolid line) and ap-
proximate curves corresponding @© metropolis importance sam-
min{1,G(E)/G(E + AE)}, (E+AE) e | pling. Average behavior over 20 samples. For each temperature we
= 0, (E+AE) ¢ I. (10 have used after equilibration aboutl0* Monte Carlo sweeps for

averaging.(ii) Wang-Landau multirange samplin@our indepen-
The random walk is not allowed to move outside of thedent random walks transversing the total energy ratidge.Wang-
energy range, and we always update the histogram valueandau multirange sampling applied to the critical energy subspace
H(E) - H(E)+1 and the DOS valu&(E) — G(E)* f; after a (CrMES) (i.e., 20 independent random walks ran in a slightly wider
spin-flip trial. Here, of coursef; is the value of the Wang- energy range of extensior450 energy levels Note that(ii) and
Landau modification factof13-17, at thejth iteration, in  (iil) have approximately the same time requirements. Obviously the
the procesgf— /) of reducing its value to 1, where the improved accuracy of thg proppsed scheme is apparent mfsunly be-
detailed balance condition is satisfied. In all our simulations"@use; for the same available time, one can perform more indepen-
the Wang-Landau modificatiofor the control parametgr dent WL random walks.
was chosen to have the initial valug:,;=e~2.718 28... .
When starting a new iteration the control parameter idevels with the largest to be the central subinter¢z00-160
changed according tqﬂz\;“fj ,j=1,2,...[13]. Also, we use  energy levels Finally, in each case we observed the behav-

the following criterion for the histogram flatness: ior in a sample of several independent runs and the
_ j-iteration processf;,;=Vf;,j=1,2,..) is carried out, until

maxH(E) —minH(E) <0.05 (11  fluctuations around a “mean” for the specific-heat peak are

maxH(E) R obtained. In almost all cases, this occurred in the range be-

] ) o tween 20 and 26 Wang-Landau iterations for the modifica-
Using a multirange approach, we divide the total energyion factor. Figure 1 shows the application of Monte Carlo
range or the expected MES in several subintervals OVe”apapproaches to the specific heat peak for a<50 square
ping in one or several points at their ends. These subinterva|§ing lattice. The traditional Metropolis importance sam-
can be then joined at the end to obtain the DOS in the ranggling, the Wang-Landau multirange sampling of the total
of interest. In joining two neighboring subintervals the de-pog and the proposed in this paper “critical minimum en-

generacies in one of the two have to be adjusted so that i@rgy subspaceCrMES)” sampling are compared to the exact
end-point degeneracies conform to the corresponding degegpecific-heat peak.

eracies of the neighboring interval. Obviously, this is a pro-

cess that may propagate “histogram errors,” but from the

description above it is apparent that one can arrange this | A TEST CASE: THE SQUARE ISING LATTICE

process to leave unchanged the “central subinterval degen- . _ _

eracies.” Since this subinterval can be chosen to have its Ferdinand and Fishel8] have asymptotically analyzed
center close to the energy vaIl'ETi), this choice will be the cr[t|cal point anomaly of axn plane square Ising Iat'-
optimal and it will produce relatively small errors. Usually, tice with periodic boundary_condltlgns. In that_ paper, which
when one is sampling the total DOS, a normalization condi—has been_ one (.)f the most influential Papers in the d_evelop-
tion is applied. This condition may concern the ground statd"ent of finite-size scaling theory, an explicit expansion for

degeneracy, or the total number of states of the system, 6pe specific heat close to the critical point is described. We

. s :_shall use their asymptotic expansion to test our simulational
even some convenient combination of known degeneracie : . . ;
g data obtained via Wang-Landau scheme in the CrMES. This

However, normalization does not effect the values of the , o o "

. ) = Is a first examination of our proposal for estimating the criti-
specific heat, so we may cogve*nlently chodS€E")=1, 4| behavior through a “CrMES Wang-Landau scheme.” Fur-
whereE’ is an initial guess folE(T,) which serves as the thermore, by performing the Wang-Landau random walk in a
center of the “central subinterval.” Furthermore, since theslightly wider range than the CrMES, we can estimate the
central subinterval is the most influential in the determina-finite-size extensions of the CrMES and explore the possibil-
tion of the specific-heat peak, we have chosen the subinteity of estimating the critical behavior using the scaling law

vals to have varying length®f the order of 50-160 energy proposed in Eq(8).
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TABLE |. Exact and approximate Wang-Land@L) results for the square Ising model. Pseudocritical
temperature?.’*L, corresponding specific-heat vaILIé*g and specific-heat values at the exact critical tempera-
turesC(T,). The exact DOS has been obtained by the algorithm provided in[R&f.

L T,: exact To WL C,: exact C.: WL CL(To): exact  Cy(To): WL
10 2.34459 1.30906 1.26002
14 2.32407 1.48356 1.43117
20 2.30820 1.66628 1.61116
24 2.30190 1.75899 1.70273
30 2.29553 1.87193 1.81450
34 2.29251 1.93507 1.87706
40 2.28909 2.01686 1.95818
44 2.28731 2.06473 2.00570
50 2.28518 2.2853) 2.12885 2.133850 2.06938 2.0791150
54 2.283%3) 2.169Q200 2.115@250)
60 2.28283) 2.2275300) 2.162Q350)
64 2.28163) 2.2523350) 2.186Q300)
70 2.28093) 2.291a350) 2.2242350)
74 2.28054) 2.3240400) 2.2587400)
80 2.27964) 2.363400) 2.300@450)
84 2.27924) 2.390450) 2.3244500)
90 2.27814) 2.420450) 2.365@500)
94 2.27794) 2.446Q500) 2.384G500)
100 2.27784) 2.471@600) 2.412G500)

Since for the two-dimensional case the exact critical temWe can easily devise a “self-consistent” test to inspect from
peratureT, is known, it is useful to apply the “CrMES Wang- the derived DOS(in the wider rangg whether or not the
Landau scheme” for both the exact critical temperature an@stimated critical extensions are completely determined in
the pseudocritical temperatufié. Actually, this means that this wider range. This is easily accomplished by using suc-
we have to run the Wang-Landau random walk in a widercessively increasing ranges, starting from the estimated
range. As an example, let us give details for the case of &'MES ranges, and observing the variation in the estimated
50X 50 lattice. Counting the energy levels &E)=(E  €xtensions as the range grows up to the final wider version.
+2N)/4+1, that is starting the enumeration from the groundBecause of the exponential convergence mentioned earlier,
state, the energy levels corresponding to the “centers” for thES procedure will converge very fast. Thus one can manage

. - _ to know after his runs whether the originally “guessé&dt
two temperatures of interest arée(E(TJ)=354 and estimated through an extrapolation schgmeenge was large

ie(E(T,))=378. The corresponding extensions for a chosersnough to produce accurately the extensions of CrMES. Af-
level of accuracy =107° are 392 and 394, respectively. Note ter a successful run for a given lattice size we may know, if
that these “extensions” are measured in terms of the conveye wish, to what percentage was necessary to increase the
nient counting integer variablie(E). The extensions of the CrMES (from each sidgin order to accurately estimate its
critical ranges are of the same order but their centers do n@xtension. This information may be then used for extrapola-
coincide (reflecting the shift of the pseudocritical tempera-tion to larger lattice sizes.

ture). Their displacement is 24 energy levels, so in order to  Table | presents the pseudocritical temperatures, the cor-
achieve[for the specific-heat approximatiai®)] a relative  responding values of the specific heats as well as the values
error of the order of =10°°, we should execute the Wang- of the specific heats at the exact critical temperature for lat-
Landau random walk in a range of the order of 4394 tice sizesL=10-100. The results fot=10-50 were ob-
+24) energy levels. If we furthermore request to accuratelytained using the exact DOS derived by executing the algo-
estimate the extensions of the corresponding MES, weithm provided by Ref.[22], while the estimates for the
should consider a slightly wide(from each side range, larger lattices by the proposed CrMES Wang-Landau
which in the case of a 5050 lattice modifies the required scheme. For the lattice 5050 both exact and approximate
range of the order of 450 energy levels. Thus the number ofesults are shown for comparison. For each lattice size we
energy levels for the Wang-Landau random walk is greatlyhave considered 20 random walks in order to improve statis-
reduced, since this number should be compared to a total dics. To obtain estimates of the errors, the specific-heat values
2500 energy levels for the 5050 lattice. A practical method were calculated separately from the DOS of each random
for guessing the wider range necessary for an accurate estiralk (thus taking afterwards suitable averagesut also
mation of the extensions of the CrMES may be as followsfrom the averaged DOS of the sample. We have also ob-
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served the variation of the estimated parameters as a function L=10-50: A;=0.5031), B.=0.1042),

of the order of Wang-Landau iteration in the process of re-

ducing the modification factor. Although we do not know

any general criterion for an “optimum” estimation using the L=10-100: Ay=0.4992), B.=0.1146),
Wang-Landau technique, we think it is a good practice to

observe the variation of the estimated parameters as we pro-

ceed in higher orders of the approximate scheme. The errors L =50-100: A;=0.4948), B.=0.13§33). (14)

given in brackets reflect the order of the standard deviation . . .
: : . These estimates are to be compared with the values given
of averaging the separate walk estimates. Of course, usin

groups of random walks one may reduce these errors but thﬁé1 Ferdinand and Fishdt.8]:

will not affect the estimated mean. The estimates given in X

tables are averages of the two processes, i.e., mean values of A;=0.494358..., B* = B(T)=0.201359... ,
the estimates obtained from the separate walks and the esti-

mates obtained from the average@ver a sample of 20 ran-

dom walkg DOS. The values of the 24th Wang-Landau it- B.=B(T,) =0.138149... . (15
eration were used in most cases, but the behavior was
observed for thg¢20-26th iterations. As expected, the inclusion of data for larger sizes improves

Let us now see how one could try from these data tahe estimates and one can see that the improvements are in
estimate the critical parameters assuming that, at least, thfe right direction. Hence one can further refine the estimates
leading behavior is known. From the work of Ferdinand anq)y using more sophisticated extrapolation schemes and pos-
M Fisher[18] we know that close to the critical point, sibly by taking into account data for even larger lattices.

Let us now turn our attention to the verification of the
InL 1 proposed in Eq(8) scaling law for the extensions of the
CLM=AyInL+B(T)+ Bl(T)T + Bz(T)[ +oee CrMES. Table Il presents the extensions of the MES for both
the exact critical temperature and the pseudocritical tempera-
(12)  ture for all sizes considered in Table I. Again, the extensions
presented for sizels=10-50 were obtained using the exact
where the critical amplitudé\, and the firstB coefficients DOS while the estimates for the larger lattices were obtained
are given in Ref[18] for both the exact critical and pseud- by the proposed CrMES Wang-Landau scheme and for the
ocritical temperaturegsee also beloy We try to fit the data 50X 50 case both exact and approximate results are shown
of Table | forC_(T,) andCL(TD to the above expansion and as @ comparison. A striking observation concerns the errors
reproduce the correct amplitudes. However, it is well knownof these artificially constructed parameters. In fact for very
[6,23 that including many independent correction terms,large lattice sizes there are relatively small errors, while for
even when high-quality data are available is not a suggeste@ioderate sizes there are no errors at all. Indeed, despite the
procedure, unless we have almost exact data up to very lardact that the reported errors were obtained in the same way as
lattices. In all other cases, it seems that the best one can dolf3 the case of the specific-heat values, the relative errors of
to start with (or search for the dominant correction term. the extensions are smaller by a factor of 10 for the largest
Therefore in the present case we consider only the first twipttice size used =100. The center of the CrMES fluctuates

terms in the above expansigsetting the other terms zero from walk to walk due to the approximate DOS produced by
and pay attention in estimating the critical amp“tud@ the Wang-Landau scheme. However, the errors in determin-

(mainly) and the constarB contribution. ing these central points are in general greater than the errors
F|tt|ng the finite-size Va|ueiexact and approximatE, in detel‘mining the extensions of MES. Table Il contains the
where for the sized =54-100 the Wang-Landau data of €xtensions of the CrMES for three different levels of accu-

Table | are usedof the specific heat at the corresponding racy specified by =10%,10°%, andr=10"°. At this point we
pseudocritical temperatures for sizes 10-50,L=10-100, note that even the largest valueradetermining the accuracy
and L=50—100 we obtain the following estimates for the levelin Eq.(6) is smaller than the relative errors produced by

critical amplitude and the constaBtcontribution: the Wang-Landau technique. The approximation proposed in
Egs. (5), by restricting the energy space, will not introduce

errors outside the limits of the Wang-Landau accuracy. As
pointed out, our calculations were done in sufficiently wide
ranges so that the extensions of the CrMES were accurately
estimated. Note that if our runs were performed in a wide
enough range, sufficient to accurately estimate the extensions
of MES for say the third criterion, then this range would be
sufficiently wide for the estimation of the extensions corre-
sponding to any larger value of

Trying to fit these extensions to an asymptotic expansion
Similarly, applying the same fittings for the specific-heat dateof the form(12) we find that the dominant correction is the
at the exact critical temperature we find third term. Thus we use the following formula:

L=10-50: A,=0.5091), B* =0.1404),

L=10-100: A,=0.5041), B* =0.1545),

L=50-100 Ay=0.4945), B* =0.1982). (13
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TABLE Il. Critical minimum energy subspad€rMES) extensions for the square Ising model calculated for the three predefined levels
of accuracyr. Note that the relative errors for these extensions are much smaller than those for the corresponding specific heats.

exact WL exact WL exact WL exact WL exact WL exact WL
L AE*(r)® AE*(r) AE*(rp* AE*(rp) AE*(r)® AE*(ry) AE((r) AE(r) AE(r) AE(ry) AEd(ry) AE(ra)

10 38 40 45 36 39 43

14 63 68 74 62 66 72

20 101 111 127 99 109 126

24 126 140 161 124 138 159

30 165 184 213 163 182 211

34 191 213 248 190 211 246

40 232 259 302 230 257 300

44 259 290 339 257 288 336

50 301 301 337 337 394 394 299 299 335 335 392 392
54 329 368 432 327 366 429
60 371 416 489 369 414 486
64 400 448 527 398 446 524
70 4421) 497 5841) 44Q(1) 494(1) 582
74 4721) 53Q(1) 624(1) 4701 5281) 621(1)
80 5161) 580(2) 6822) 514(1) 577(1) 6792)
84 5451) 6132) 7222) 5431) 6102) 7192)
90 5891) 6632) 781(2) 587(1) 660(2) 7782)
94 6192) 696(2) 821(2) 616(2) 6932) 8182)
100 6622) 7452) 881(2) 6592) 742(2) 8772)

%,=1073, r,=10% andr;=107°,

AE(r) 2 InL estimating critical behavior via the finite-size scaling analy-

W(r) = ( XE ) ~ANINL+B(N=—. (16  sis. Since AE,=AE*~2 for all lattice sizes, the extensions
of the CrMES at the exact critical temperature follow the

Table Il gives the estimates for the above amplitudes forsame scaling law. We end this section by noting that one can

sizesL=10-50,L=10-100, andL=50-100. Also Fig. 2 use the data in Table | to estimate from the l&2b) the

shows the behavior of these extensions versus lattice size. Asitical exponentr and the critical temperaturg..

was expected on physical grounds, the extensions of CrMES

follow the same asymptotic law with the specific heat in the IV. THREE-DIMENSIONAL ISING MODEL

critical region and provide a different independent method of

Despite the intense effort made over the last decades, the
TABLE IIl. Estimates of amplitudes obtained by fiting 46)  three-dimensional Ising model has defied exact solution

to the CrMES extensions presented in Table Il for the square Ising

model. 80
70 VVVVV
] =10° .4
L A(r) B4(r) . Ir=:g: y V/vv’
10-50 W(ry) 10.088) -34(2) oo -
W(r,) 12.8%11) -55(3)
W(ry)? 17.8%16) -92(4)
10-100 W(rq) 9.903) -32(1)
W(r,) 12.654) -52(1)
W(ry)? 17.755) -92(2)
10 T T
50-100 V(ry) 9.833) -2912) 10 L 100
W(ry,) 12.6Q4) -51(2) ) ) ) )
W(rg)? 17.813) ~96(2) FIG. 2. Demonstration of the logarithmic scaling laW6) of the

CrMES extensions for the square Ising model, shown for the three
*Mean value over the three fitting range(r3)=17.846), By(rs) levels of accuracy chosen. Note that the extensid&sare defined
=-934). to be dimensionless as discussed in Sec. Ill.
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[24,23 and though it has been investigated extensively by

various numerical methods, is still a matter of sophisticated

numerical analysig26—-54. The critical properties of the

model, i.e., the critical temperatufe, the thermal and mag-

netic scaling exponentg andy;, and also the leading ther-

mal irrelevant exponeny;, seem to be known with good o

accuracy{48]. However, the absence of exact results creates,

at least in principle, a motive for disagreemef#8,53. For

many years reliable estimates fog and the critical expo- 124

nents have been obtained by series-expansion data,

e-expansion studies, Monte Carlo renormalization group 08

studies, and the coherent anomaly metf#}-33,39—-44,54 0 5 1o 15 20 25 30 3
The traditional Monte Carlo sampling, importance sam- L

pling, and histogram techniques, have been used also to

investigate  the  three-dimensional Ising model

[23,34-38,46—4Bbut only recently[48] have such studies

provided accurate estimates of the critical exponents. There v vty »

are two reasons for the modest accuracy obtained in these Cu = LYo+ Au(K = KLt + pg + rL & + 5oL YC

Monte Carlo simulations. First, extended runs are necessary 17

to reduce the systematic and statistical errors, which arise

due to the finite number of samples taken. Second, COITeGy, this expansion the renormalization group behavior of the
tions to scaling are much more important in three than in tWgyqe energy with a scale factéh has been used. Moreover,
dimensions. The leading irrelevant thermal exponent for thepe ayistence of an irrelevant field has been assumed and
three-dimensional Ising model has the valye-0.8215  gome terms from the more general expansion have been
[48] and this means that corrections decay relatively slowly,mitieq as dominated by the correction terms included in Eq.
The two effects of finite sampling time and finite system size(17) [see Eq(A2) and discussion in Ref46]]. Blote et al.
become intertwined and jeopardize the finite-size scalin 46) used a fixed value for the irrelevant exponent:
analysis. In particular, it has been very difficult to accuratelyyi:_0_83 and thealueK,=0.221 654 1K =J/KgT) for the

estlrlna_te t?iﬂtherméll clrltlcal e_;gpohnent(;‘rom fllnlte-5|2ﬁ Scal'r%ritical temperature. Thus, in order to estimate the thermal
analysis of Monte Carlo specific-heat data close to the pseudSiitical exponenty,, five more parameter&o.ty. po.r ,S.)

ocritical temperatures. - . . i Mo
Blote et al.[46] have presented an extensive Monte Carloflhr:ea Iens\;iorLV;tg/lzlE gélz?lb-ll—,lrt“tsh emear?grsa:g:)n;retg:jcop;ﬁix/ee

simultaneous analysis of three cubic Ising models belongin arameters \;veré ver,y larg@ip to 100% even for the

to the same universality class. Their data were obtained b oefficientsq, (q,) of the leading singularity

several “cluster” algorithms and their analysis included a We a Iiea thle CrMES Wana-Landau scheme to obtain

finite-size scaling study for the specific-heat anomaly of the[h pp 9

simple cubic Ising mode{Sec. 5.2 in Ref[46]). Further- e DOS for lattice sizek=4-32 for thesimple cubic Ising

more, in a recent analogous s.tudy Deng r;md é[geg pro- lattice. For each lattice, several random walks on the selected
posed a different “better” route for the estimation of the ther-reStrICteOI energy space were performed for averaging. The
mal exponent. In this latter study, a quantifQ,) that numbers of these walks varied with the lattice size, ranging

from 30 walks for the sizd.=4,to 100walks for the size

ggrnrseilta t[(3188] tf\;vehi(r:rrl]aﬁgse t;zgl;t:grr} glrsctiril\l/)eurtlce);cgl\s\r/]itr:r]riseggtrgt]gl‘:32' We used the same procedures for averaging and esti-
yiael, whict 9 19 b ating the errors, described in the previous section. In this
the system size, is used. In general, it appears that the tradi- : o . o
. S - way we obtained data for the specific heat in the critical
tional route for the estimation of the thermal critical expo- "~ . . .
. o region following the method described in Sec. Il. We also
nent, via specific-heat data, has been overlooked over th

years because of the problems faced in trying to fit thes(?a?t;empted a similar analysis, based on the expania,

FIG. 3. Specific-heat valuggn units of kg) of the cubic Ising
model for the three temperatures mentioned in the text.

temperatures: the pseudocritical temperatu'lf]i_asa “good”
approximationT;=4.51152.. (K.=0.221 654 7[46)) for the
exact critical temperaturg;, and finally a “lower” tempera-

[y;=1.58683)], with the modest estimatfy;=1.602)] in
Blote et al. [46]. In view of this situation, it is of interest to
apply our proposal for estimation of the DOS via a Wang- _ i S,
Landau random walk in the CrMES and study again the sdure defined for each lattice Bl =2T, —T.. Figure 3 shows
produced numerical data for the specific-heat peaks. Furthef?€ values of the specific heat at these temperatures as func-
more, it is most appealing to examine whether the data fofion of the lattice size. In Table IV we present our estlr_nates
the r-dependent extensions of the CrMES give, when subfor the pseudocritical temperaturd§, the corresponding
jected to finite-size analysis, estimates in agreement with thialues of the specific he&@ and the extensions of the criti-
already known values of the thermal critical exponent. cal minimum energy subspac¢€rMES) AE* (r) for the

We may, following Bloteet al. [46], use an expansion for three levels of accuraay=1073, 104, 10°°. From Fig. 3 one
the specific-heat values close to the critical point of the forncan observe a rather smooth behavior with relatively small
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TABLE |V. Estimates obtained via Wang-Landau CrMES scheme described in this paper for the cubic
Ising model. Pseudocritical temperatufﬁis corresponding specific-heat values, and CrMES extensions for
the three levels of accuracy

L T c(T) AE* (ry)? AE* (r5)? AE* (rg)?
4 4.115020) 1.224230) 45 47 51

6 4.275220) 1.563250) 122 133 148
8 4.349%20) 1.792Qq70) 215 236 269
10 4.394420) 1.972Q100) 325 359 413
12 4.421020) 2.118Qq170) 453 502 579
14 4.439%30) 2.236%240) 596 661 766
16 4.453230) 2.3243380) 753 836 971
18 4.4623830) 2.4177390) 9251) 10292) 11952)
20 4.470230) 2.495%400) 11061) 12322) 14332)
22 4.475830) 2.5674420) 13022) 14512) 16902)
24 4.479630) 2.6242450) 15046) 16776) 195410)
26 4.485435) 2.6648750) 17228) 19268) 224410)
28 4.487945) 2.6966800) 19518) 21798) 254410)
30 4.491145) 2.732%900) 217810) 243210) 284510)
32 4.492950) 2.7688900) 243Q110) 271410) 317612

%,=1073 r,=10% andr;=107°,

errors. The estimates for the lower temperaffjreeem to be ~ ranges but with larger errors. Considering the mean and the
the most accurate. However, our attempt to fit these data iftandard deviation of these six estimatese the Appendix

the expansior(17) produced modest estimates for the ther-We find

mal exponent and very large errors for almost all other pa-

rameters. We found estimates of the same order with those y;=1.587831), q,=2.086), r=-0.4320). (18

given in Bloteet al. [46], at least for the dominant terms of The ab | hould b d with th |

the expansion, but such fittings are not reliable since the. € above values shou e compared wi € values

errors in all coefficients are very large. given in Bloteet al. [4_6]. Our error limits are about ten times
In order to suppress the errors we tried to omit furthersma”er and our estimate for the thermal exponent is very

terms from the expansion and we searched for stable form@Ose to the value given by Deng and Blofég] [y,

as we disregarded the smaller lattice sizes from the fittings. 1->66&3)]. The constant term and the main amplitugie
Thus we have observed the fittings, for several alternativ@'® just marginally in agreement with the values in Blete
truncations of the expansion, in the following six successivé [46] [P,=-0.8(7) andq,=1.55)]. This is a good coinci-
intervals: L=4-32,6-32, ...,14—32Among other possi- dence and we may speculate that this exceptional case is very
bilities, we kept(as nonzerponly the correction terms with  €l0Se to the exact result. Its appearance may be well related
coefficientsq, andr in Eq. (17). The resulting estimates for 0 the absence of the term with coefficieqtin the expan-
the thermal exponent shift to lower values as we move t&ion, which for the other two temperatures may cause fitting
larger-size intervals. Thus, although some of the estimate@roblems. Furthermore, a stable sequence of fittings using
seem to be very close to the expected value of the criticaihe specific-heat values at the lower temperaflife 2T’L
thermal exponent, the overall behavior is rather unsettled T, is also given in the Appendix. This sequence produces
producing estimates fay, in a rather wide range: 1.56-1.62. estimates for the thermal exponenpt comparable with that

An explanation for this behavior may be the following: as wegiven in Eq.(18). Finally, note that we may use the values
move to larger lattice sizes the relative contribution of thefor T| to estimate the critical temperatufg and/or the criti-
various correction terms is changing and this make the analycal exponentr from Eq. (2b). The fitting for the casd

sis for these relatively small sizes very sensitive. Howevers12—-32 provides good values for both these critical param-
some quite acceptable exceptions will be now mentionedeters, without even using correction terms. To obtain values
Consider, the specific-heat values at the temperalifre comparable in accuracy, with the best known estimates, a
=4.51152... and fix the value of the constant contribution instudy of several different thermodynamic quantities may be
the neighborhood op,=-1.5, then allowg, andr to vary = necessarysee, for instance, Ref23)).

and make successive fittings for all intervals fram4—32 Let us now examine the verification of our proposal for
up toL=14-32. These six fittings are very good and stableghe scaling of the extensions of the CrMES. The estimates
and produce estimates with very small errors. They give apfor these extensions are included in Table IV. Once again one
proximately the same value for the thermal exponent but alsoan observe that the reported relative errors for these exten-
for the coefficients), andr. This is true for even larger-size sions (for the three levels of accuragyare significantly
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TABLE V. Fitting attempts using Eq(19) to estimate the ther-

PHYSICAL REVIEW E 70, 066128(2004)

of the accuracy levelr) will not introduce errors in the

mal exponeny; from the CrMES extensions shown in Table IV for specific heat, larger than those generated from the Wang-

the cubic Ising model. Note that the mean valdgs/en in the
footnote belowy for y;, are close to the valug=1.587831) given in

our proposal18) and to the valug,=1.58683) of Ref. [48].

Landau random walk. Thus if we minimize our requirements
so that we only calculate the value of the specific heat at the

pseudocritical temperature, then the energy subspace needed

is only 1/20 of the total energy space for the>3232x 32

cubic lattice. The extended energy ranges used for the esti-

L q(r) p(r) Yt
4-32 W(r,) 1082) -261(7) 1.5963)
W(r,) 1323) -32810) 1.60%3)
W(ry) 17Q13) -440(11) 1.61Q3)
6-32 W(r,) 107(4) ~255(14) 1.5985)
W(r,) 13Q5) -321(19) 1.6025)
W(ry) 1795) ~47618) 1.6033)
8-372 W(ry) 1155) -29320) 1.5885)?
W(r,) 1426) -37327) 1.59%6)%
W(ry) 1896) ~52427) 1.5964)%
10-32 W(ry) 1296) ~356(25) 1.5746)"
V(r,) 1559) -43940) 1.5797)°
W(ry) 2038) -58939) 1.5876)°

mation of the parameters in Table IV and the values of the
specific heat at the temperaturgs T, are summarized in
the Appendix(see Table V).

When the extensions of the CrMES are subjected to a

finite-size analysis using a many-parametric expansion as
Eqg. (17), we again find modest estimates for the thermal
exponents and large errors in all other parameters. However,
we have discovered that the dominant contributions now cor-
respond to the terms with coefficierag andr in Eq. (17).
Introducing a more convenient notation we assume that these
extensions scale as

*Mean value(over the three levels

exponenty;=1.5924).

PMean value(over the three levels

exponenty;=1.5807).

of accurgcef the thermal

of accurgcyf the thermal

(AE
Vr)y=\—5

T
Ld/2

*

2
) = q(NL? 9+ p(nLA ™. (19)

Table V shows successive fits on the above form for the three

levels of accuracy. As previously the value of the irrelevant

exponent is fixed to the valug=-0.821, but no other pa-

rameter is fixed. The last two fittings give close agreement
(almost to the third decimal plagavith the best known es-
smaller(by a factor of 10 than those concerning the values timate of the thermal critical exponept8]. There is a small
of the specific heat. It is also remarkable that for sizes up tshift of the estimated thermal critical exponent to a lower
L=16 there are no errors at all for these extensions. Note thaialue as we move to larger lattice sizes indicating possible
even the restriction of the energy space using the larger valuexistence of further correction terms. This shift is similar, but

TABLE VI. Specific-heat values for the cubic Ising model at the two temperaf[uedeé defined in
the text(see also footnojeThe counting variableig(E/;) andie(E/,.), whereie(E)=(E+3N)/4+1, specify
the extended range used in this work. The portion of the energy space used in our calculations is given in the

last column.

L C(T® ie(Efin) ie(Epad (Emax Emin)/ (Emax=Emin)
4 0.995420) 0.977620) 70 0.73
6 1.323Q@30) 1.225630) 170 0.52
8 1.547160) 1.390860) 30 380 0.46
10 1.724%80) 1.524880) 150 670 0.35
12 1.861080) 1.630a80) 360 1100 0.29
14 1.9846150) 1.7234150) 710 1670 0.23
16 2.0854250 1.8129250) 1220 2410 0.19
18 2.1790350) 1.8883350) 1800 3500 0.19
20 2.2527380 1.955%380) 2800 4520 0.14
22 2.3190380 2.017@380 3900 5960 0.13
24 2.3728400) 2.072Q400) 5250 7650 0.12
26 2.4307470) 2.1458470) 6870 9680 0.11
28 2.4738500 2.1772600 8790 11970 0.10
30 2.5209650 2.234%800 11150 14590 0.09
32 2.551%700) 2.270@850) 13700 17650 0.08

T, =2T, -T,, T.=4.51152.. (K,=0.221 654 7.
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TABLE VII. Successive fittings for the specific-heat values  TABLE VIIl. Successive fittings for the specific-heat values

C(T,). Scaling expansiogAl) is used. C(T). The expansion used is given in E&2).
L o r v L o v
4-32 2.092) —0.466) 1.58692) 4-32 1.6387) 1.5921)
6-32 2.044) -0.2710) 1.590222) 6-32 1.6289) 1.5931)
8-32 2.086) -0.2717) 1.590433) 8-32 1.62711) 1.5931)
10-32 2.089) -0.2728) 1.590450) 10-32 1.63713) 1.5921)
12-32 2113 -0.5445) 1.586Q71) 12-32 1.65(Q15) 1.59q1)
14-32 211 -0.7674) 1.5828§105) 14-32 1.67115) 1.5882)
®Mean valuey;=1.587831). 16-32 1.69216) 1.5862)
18-32 1.71814) 1.5841)
considerably smaller, with the one detected in our fittings for20-32 1.73817) 1.5822)

the specific-heat values at the pseudocritical temperaturess:
Thus we can conclude that the proposed scaling law of th
CrMES introduced in this paper is correct and can be con-

sidered as an effective technique for estimating the thermdrom the incomplete detailed balance condition. As always,
critical exponent. we may expect errors from the random number generation

and the usual statistical fluctuations. An “optimization” of all
these errors seems to be at this time quite demanding. The
multirange approach described in Sec. Il, that leaves un-

We have presented a simple and efficient approximatiowhanged the central subinterval degeneracies, is only one “in-
scheme, which greatly facilitates the application of Wang-gredient” of such an optimization.
Landau sampling in large systems for the estimation of criti-
cal behavior. In particular, we have applied our proposal to
study the finite-size behavior of the specific heat for both ACKNOWLEDGMENT
square and cubic Ising lattices. It has been shown that one
needs only a relatively small part of spectral degeneracies iﬁ
order to obtain good estimation of the specific-heat peaks,
We have described the outline of an algorithm for identifying
this part of the total energy range. Furthermore, a scaling law
for the finite-size behavior of the extensions of the critical APPENDIX
part of the minimum energy subspagerMES) determined
with the help of a predefined level of accuracy was proposed. Here we present specific-heat values obtained by the pro-
This scaling law has been verified for both models studied irposed CrMES Wang-Landau method and give further details
this paper and estimates of the thermal critical exponent foef the fitting attempts to the expansigf7) for the cubic
the three-dimensional case were obtained through this routésing model. Table VI gives the specific-heat values and
Also in the two-dimensional case the expected logarithmicspecifies the extended energy subsg@m®»IES) used in this
behavior was confirmed. paper in order to obtain the accuracy level107® and also

In this paper we have considered an important aspect afstimate the extensions given in Table IV. The valG€s,)
the problem concerning the extraction of the critical behav-of the third column of Table VI are now fitted in the follow-
ior, by employing finite-size scaling theory and the recenting scaling formula:
methods that directly calculate the density of states of clas- " 2y-3 23821
sical statistical models. Future applications of the proposed C(Te) = = L5+l 4 rL =2 (A1)

scheme concern several models, for which we may use thgne successive estimates for the amplitugieandr and the
Wang-Landau technique or the broad histogrghi(] and  thermal exponeny, are given in Table VII. Their mean val-
transition matriq 11,12 methods. However, the main goal is yes over the fitting ranges appear in our proposalli).

to IMprove accuracy and pbtaln hlgh-qu_allty data fqr SUb'Finally the values ofC('i',_) are fitted in a more restricted
stantially larger lattices. This may be achieved now with theform (A2), given below. The produced estimates are shown
help of our proposal but the need of a comprehensive exami_' o Vlﬁ ' P
nation of all “systematic” and statistical errors of the DOS '

methods is now indispensable. The errors, for example, when N 2y~3 _ o] 2y-3.821

implementing the Wang-Landau method are coming from C(TL) == 0.3 4oL ¥ -2 ' (A2)
several sources. There are errors coming from the finite acFhe particular values of the expansi@dv) for p, andp, and
curacy of the histogram flatness which may propagate and chosen in Egs(Al) and (A2), a respectively, provide a
amplify through the process of connecting the energy rangestable and convincing picture for the estimation of the ther-
in a multirange approach. There are also errors stemmingal exponent.

ean valuey,;=1.588941).

V. CONCLUSIONS
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